N-96-01 II-A-210

Unised States. Environmental Protoction Ageney

EPA 550/9-82-338

NOISE EXPOSURE AROUND JOINT-USE AIRPORTS

÷ ٠.

DECEMBER 1980

Same.

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF NOISE ABATEMENT AND CONTROL WASHINGTON D.C. 20460

يسابدون القربات المراوية العرفية

REPORT	DOCUMENTATION	1. REPORT N	EPA 550/9-	82-338	2		1.	Recipient	a Accessio	n No.	
4. Title and	NOISE EXPO	SURE AROU	JND JOINT-U	SE AIRPOR	TS	<u> </u>	\$ 1	teport D	БЕСЕМВ	ER 1980	<u> </u>
7 Authorita				···			(¢		- America	alan Bene	
	Richard Burk	e – Dwigl	nt E. Bisho	p				BBN	4218		
9. Performini	Bolt Beranek	and Newr	nan Inc.				10.	Project/ 09	398	Unit No.	
							11.	Contract	C) or Gran	it(Q) No.	
							(0)				
2. Sponsori	U.S. Environ	nd Address Merital Pr	otection A	gency			13.	Type of	teport & P	eriod Cove	red
	Office of No Washington,	ise Abate D.C. 204	ement and C 160	ontrol			14.	F1	nal 	_	
						<u> </u>		EP,	A ONA		
	This report people to no aircraft and affected by	describes ise from predicts increasir	a study o airports u how exposi agly string	f present sed by bon ure around ent aircra	and th ci i the aft r	future e Ivilians se airpo Ioise reg	xposur and mi rts wi ulatio	es of litar 11 be ns in	4		
	This report people to no aircraft and affected by the absence	describes ise from predicts increasir of simila	a study o airports u how expos igly string ir regulati	f present sed by bo ure around ent aircra on of mil	and th ct the aft r itary	future e lvilians ese airpo noise reg / aircraf	xposur and mi rts wi ulatio t.	es of litar 11 be ns in	ý		
). Jocument	This report people to no aircraft and affected by the absence the absence Noise Contro Noise Contro Noise Exposu Airport Nois Joint-Use Aff	describes ise from predicts increasir of simila increasing of simila	a study o airports u how exposi- igly string r regulation r regulation Airports d Noise Exp	f present sed by bo ure around ent aircra on of mill posure	and th ci i the i tary	future e lvilians ese airpo noise reg r aircraf	xposur and mi rts wi ulatio t.	es of litar ll be ns in	y 		
 Document b. identifit a. COSATI Availability 	This report people to no aircraft and affected by the absence Noise Contro Noise Contro Noise Exposu Airport Nois Joint-Use Ai an/Open-Ended Terms Field/Oreup	describes ise from predicts increasir of simila increasing of simila	a study o airports u how exposi- igly string r regulation Airports d Noise Exp	f present sed by bo ure around ent aircra on of mil: posure	and th ci i the aft r i tary	future e Ivilians ese airpo noise reg / aircraf	xposur and mi rts wi ulation t.	es of litar ll be ns in	21. No.	of Pages	
2. Document b. Identifi a. COBATI Availability	This report people to no aircraft and affected by the absence Noise Contro Noise Contro Noise Exposu Airport Nois Joint-Use Aff an/Open-Ended Terms Field/Oreup	describes ise from predicts increasir of simila increasing of simila	a study o airports u how exposi- igly string r regulation Airports d Noise Exp	f present sed by bo ure around ent aircra on of mill posure	and th ci i the itary	future e Ivilians ese airpo noise reg r aircraf	This Report	es of litar ll be ns in	21. Ne. 22. Pric	at Pages	

1

n

ورية دوم

BBN Report 4218 Project 09398

EPA 550/9-82-338

NOISE EXPOSURE AROUND JOINT-USE AIRPORTS

Richard Burke Dwight E. Bishop

December 1980

÷

The second second second

Prepared for:

U.S. Environmental Protection Agency

This report has been approved for general availability. The contents of this report reflect the views of the contractor, who is responsible for the data presented herein. This report does not necessarily represent the official views or policy of EPA. This report does not constitute a standard, specification or regulation.

PERMISSION IS GRANTED TO REPRODUCE THIS MATERIAL WITHOUT FURTHER CLEARANCE

ten Tenge unterstellen Vereinen Brecken Britanis er eine sternen versichten bestellte eine Britanis er eine ste

- そうようできょうかん ひのう いっしい いんせん 見たがれた たいがける 後期 医しゅう ごうけん 自己的 たれ時間 利益的 しいたい いっけい 大学 パイト

TABLE OF CONTENTS

1.0	Page INTRODUCTION
2.0	EXISTING JOINT USE AIRPORTS
	2.1 Airport Identification
	2.2 Military Aircraft
	2.3 Civil Aircraft
	2.4 Runway, Flight Track and
	Profile Characteristics
	2.5 Population Characteristics
3.0	NOISE EXPOSURE COMPUTATION METHOD
	3.1 Noise Regulation Scenarios
	3.2 Computer Program (NOISEMAP)
	3.3 Method of Scaling Results
4.0	RESULTS
	4.1 Reduction in Impacted Area
	4.2 Reduction in Exposed Population
	4.3 Effects on Different Airport Classes
	4.4 Conclusions
REFEF	RENCES
APPEN	IDIX A - Flight Procedures Used to Model Civil Aircraft at Joint-Use AirportsA-1

i

and a state of a state of the second state of

ويراجعوا مكاريب الافاركاتير والرفادي مسترد سيمير ومرايا محمد والافتان والانار والراب

Entering and the second sec

٠.

,

¢

. L v 1 ļ. ,

i

:

LIST OF TABLES

		Page
2-1	AVERAGE DAILY OPERATIONS AND STATIONED	
	MILITARY AIRCRAFT AT JOINT-USE AIRPORTS	
	IN 1978	.2-2
2-2	CLASSIFICATION OF JOINT-USE AIRPORTS	•2-6
2-3	PERCENT OF AVERAGE DAILY TAKEOFFS MADE	
	BY LONG RANGE AIRCRAFT, BY TRIP LENGTH	.2-10
2-4	AVERAGE DAILY OPERATIONS	.2-11
2-5	CHARACTERISTICS OF MILITARY AIRCRAFT	
	STATIONED AT JOINT-USE AIRFIELDS	.2-13
2-6	CATEGORIES OF MILITARY AIRCRAFT	.2-14
2-7	NUMBER OF DAILY MILITARY OPERATIONS IN	
	EACH AIRCRAFT CATEGORY, BY AIRPORT CLASS	
	AND TIME OF OPERATIONS	.2-16
2-8	CATEGORIES OF AIR CARRIER AIRCRAFT	.2-18
2-9	PERCENT OF OPERATIONS IN EACH AIRPORT CLASS,	
	BY AIR CARRIER AIRCRAFT CATEGORY AND TIME	
	OF OPERATION	.2-22
2-10	AVERAGE NUMBER OF GENERAL AVIATION OPERATIONS	
	IN EACH AIRCRAFT CATEGORY, BY AIRPORT CLASS	
	AND TIME OF OPERATION	.2-24
2-11	SENSITIVITY OF CONTOUR AREAS AND POPULATION	
	TO CHANGES IN AIR CARRIER AND GENERAL	
	AVIATION FLIGHT TRACK DISTRIBUTION	.2-30
2-12	AVERAGE GROSS WEIGHTS USED IN THE MODEL	
	FOR JET AIR CARRIERS	.2-33
2-13	POPULATION DENSITY AROUND AIRPORTS, BY	
	CLASS AND RADIAL DISTANCE FROM RUNWAY	.2-36

ii

a na anna an tar an tar ann an tar an tar

「日本の「日本の」では、「日本の」

HITTON - Land - and

Page

المرحوقة والمرادية والمراجع والمراجع والمرجع والمرجع والمرجع والمرجع والمراجع

LIST OF TABLES (CONTINUED)

LIST OF FIGURES

2-1	MILITARY AND AIR CARRIER FLIGHT TRACKS
	FOR AVPORTS A, B, AND C
2-2	MILITARY AND AIR CARRIER FLIGHT TRACKS
	FOR AVPORTS D AND E
2-3	FLIGHT TRACKS FOR GENERAL AVIATION OPERATIONS 2-29
2-4	POPULATION DENSITY AROUND AIRPORTS AS A
	FUNCTION OF DISTANCE FROM CENTER OF RUNWAY,
	BY AIRPORT CLASS
3-1	TAKEOFF NOISE LIMITS FOR STAGES 2-5
3-2	SIDELINE NOISE LIMITS FOR STAGES 2-5
3-3	APPROACH NOISE LIMITS FOR STAGES 2-5

iii

.

. •

. . .

. ;

Arto Meridian de alta las de distantes en actor de antes en antes en antes en antes en antes en antes en antes

LIST OF FIGURES (CONTINUED)

		Page
4-1	NATIONAL AREA WITHIN 65 dB DNL CONTOUR	
	FROM CIVIL OPERATIONS AT JOINT-USE AIRPORTS	4-4
4-2	NATIONAL AREA WITHIN 65 dB DNL CONTOUR FOR	
	CIVIL AND MILITARY OPERATIONS AT JOINT-USE	
	AIRPORTS	4-5
4-3	IMPACTED AREA AS A FUNCTION OF DNL AND	
	REGULATORY STAGE FOR CIVIL OPERATIONS	
	AT JOINT-USE AIRPORTS	4–6
4-4	IMPACTED AREA AS A FUNCTION OF DNL AND	
	REGULATORY STAGE FOR CIVIL AND MILITARY	
	OPERATIONS AT JOINT-USE AIRPORTS	4-7
4-5	NATIONAL POPULATION EXPOSED TO 65 dB DNL	
	OR GREATER FROM CIVIL OPERATIONS AT	
	JOINT-USE AIRPORTS	4-10
4-6	NATIONAL POPULATION EXPOSED TO 65 dB DNL	
	OR GREATER FROM CIVIL AND MILITARY OPERATIONS	
	AT JOINT-USE AIRPORTS	4-11
4-7	NATIONAL POPULATION EXPOSURE AS A FUNCTION	
	OF DNL FOR CIVIL OPERATIONS AT JOINT-USE	
	AIRPORTS	4-12
4~8	NATIONAL POPULATION EXPOSURE AS A FUNCTION	
	OF DNL FOR CIVIL AND MILITARY OPERATIONS AT	
	JOINT-USE AIRPORTS	4-13

iv

المتحافي المرابقة فالمحادث وأنهاده المراجع والمراجع والمراجع والمحاوية والمحافظ والمحافظ والمحافظ والمحاف والمراجع والمحاف

Bolt Beranek and Newman Inc.

Report 4218

معتنده فيدالي والترجي

1.0 INTRODUCTION

This report describes a study of present and future exposure of people to noise from airports in the U.S. which are used by both civilian and military-based aircraft. The purpose of the study is to predict how noise exposure around these joint-use airports will be affected by increasingly stringent civil aircraft noise regulations in the absence of similar regulation of military aircraft. Of special interest is to find a point, if any, at which further reductions in noise exposure require abatement of military aircraft noise.

Joint-use airports are defined for this study as airports that have civil operations and <u>based</u> military aircraft. Airports with only transient military operations from non-based aircraft are excluded from the analysis.

In this report, noise exposures are computed for all civil aircraft operations, for the based military operations, and for the combination of the two. Noise exposures are given in terms of the land area and population exposed to day-night levels (DNL) exceeding 55, 60, 65, 70, and 75 dB. Exposures are computed for five stages of regulation: one baseline stage representing current (calendar year 1978) conditions and four other stages in which the jets and the large props in the civil aircraft fleet become progressively less noisy by means of source noise control. Noise levels for military aircraft and for small civil props are held constant throughout the analysis.

This study complements and provides an essential connection between other studies EPA has performed in the past and plans for the future on the subject of aircraft noise exposure. These include a recent study of the noise exposure to the year 2000 due to the main civil air carrier operations.¹ Military and general

1-1

Weblick Weblich Contraction and State Section Strategies with a section and section and and and and and and and

۰.

1

۰.

aviation aircraft were excluded from this analysis. Exposure to noise solely from general aviation operations is the subject of a separate EPA sponsored study, while noise exposure from military operations alone is the subject of continued studies by the Air Force and other branches of the Department of Defense. It is hoped that the present study will help provide a useful link between these other areas of investigation.

As described in the sections below, the methods which were used to obtain noise exposure values for joint-use airports involve many steps. Briefly, the steps include the following:

- 1. Identify joint-use airports in the U.S.
- 2. Categorize these airports by:
 - . number and type of military and civilian aircraft
 - . runway and flight path configurations
 - . surrounding population densities
- Define average airports representative of the categories defined above.
- Examine the reduction in noise exposure contours around these average airports resulting from the implementation of various FAA civil aircraft noise regulations.
- 5. Use these results for average airports to estimate the nationwide noise exposure around joint-use airports, and the total reductions in exposure expected

1-2

Bolt Beranek and Newman Inc.

Report 4218

معاملين من المراجع . معادلات المراجع المراجع الم to result from civil noise regulations. Evaluate the significance of military aircraft noise in light of these results.

The remainder of this report is organized in three sections. Section 2 provides a description of present joint-use airport characteristics, including number and types of aircraft, runway configurations, flight tracks and profiles, and neighboring population densities. Section 3 defines the average airports (AVports) which are used in the noise analysis and the method of scaling these results to estimate nationwide impacts. It also describes the aircraft noise regulations under study, the computer program used to generate the noise contours and the regulatory stages which were investigated. Section 4 presents the results, including estimated nationwide noise exposure impacts around joint-use airports for military aircraft alone, civil aircraft alone, and for the combination of both under various regulatory conditions. Interpretive conclusions are presented at the end of this section.

1-3

Bolt Beranek and Newman Inc.

Report 4218

 \mathbb{N}_{i}

1997年1月1日,1997年1月1月1日,1997年1月1日,1997年1月1月1日,1997年1月1月1日,1997年1月1月

2.0 EXISTING JOINT USE AIRPORTS

In this section, joint-use airports are identified and grouped into similar classes for analysis purposes. The military and civil aircraft that use joint-use airports are described, and appropriate mixes of these aircraft are found which represent average operations for each class. The flight patterns and profiles typical of each type of aircraft are discussed and modeled. Finally, the population characteristics around joint-use airports are evaluated for each class.

2.1 Airport Identification

The majority of joint-use airports which fall within the scope of this study consist of civil airports that have Air National Guard or Air Force Reserve squadrons stationed at the air field. In addition, there are a few situations in which military and civil airports are located next to each other and their aircraft use the same or adjacent runways such as Hickam Air Force Base and Honolulu International Airport in Honolulu, Hawaii. Also, there are a few military airports which have a considerable number of civil operations.

Air Force Reserve and Air National Guard squadrons are stationed at a total of 108 air fields which include 36 Air Force or Air National Guard military fields, three Naval Air Stations, and 69 civil air fields. Table 2-1 lists 66 of the civil air fields for which aircraft operation data is available. The number of average daily operations during calendar year 1978 is given for air carrier, general aviation, and military aircraft. Typically one squadron and one predominant type military aircraft are stationed at each joint-use airport. The predominant aircraft for each airport are also shown in Table 2-1.

2-1

A second static and static data of the second state o

ł

1

£

• - -

l

المستحد والمستحدين والمعتر والمستعد والمنافع والمراجل والمالية والمتحا والمتحالية فالمعالية والمحافظ والمحافظ والمحافظ

Bolt Beranek and Newman Inc.

میسی میکند. با با این از میکن میکن این این میکن این با این ایک این کاری میکن با این میکن میکند. این میکن این م ا

TABLE 2-1

AVERAGE DAILY OPERATIONS AND STATIONED MILITARY AIRCRAFT AT JOINT-USE AIRPORTS IN 1978²

AVERAGE DAILY OPERATIONS

Joint Use Airport (Alphabetica by State)) 11y	Air <u>Carrier</u>	General Aviation	Military	Total	Dominant Stationed Military <u>Aircraft</u>
Birmingham Montgomery Anchorage Phoenix Tuscon Ft. Smith Fresno Hayward Ontario Van Nuys Hartford Wilmington Jacksonville Savannah Honolulu Boise Chicago Peoria Springfield Ft. Wayne Terre Haute Des Moines Sioux City Louisville Bangor Baltimore	ALKZZRAAATELAIDLLLINNAAYED	122 357 283 935 500 178 302 955 190 593 900 178 302 955 51 90 593 900 1200 1200 1200 1200 1200 1200 1200	399 214 472 6373 408 6373 408 996 9976 1637 470 1813 4175 462 1862 1862 1862 1862 1862 1950	41163141689855666225380949222 248566225380949222	562 6411 82704 10497 16412 7004 16412 7004 16412 706895 830952 765390 233305726390 233305726390 233305726390	$\begin{array}{c} RF-4C\\ RF-4C\\ C-130\\ KC-135\\ A-7D\\ F-100D\\ F-1000\\ HC-130\\ C-130\\ F-1000\\ F-130\\ F-100\\ F-130\\ F-130\\ F-42\\ RF-4C\\ KC-135\\ C-7A\\ RF-4C\\ F-4C\\ F-4C\\ F-4C\\ F-4C\\ F-4C\\ F-100D\\ A-7D\\ RF-4C\\ KC-135\\ C-7A\\ RF-4C\\ RF-4$
Battle Creek	MI MI	6 36	159	20 17	182	0-2A
parati	N111	20	117	69	44 C	rtr⊶40

2-2

وجوبا أحيادك المحيب المعطي ستانك فالمسيد مسيرو بالميام بيوها الماح

TABLE 2-1 (CONTINUED) AVERAGE DAILY OPERATIONS AND STATIONED MILITARY AIRCRAFT AT JOINT-USE AIRPORTS IN 1978²

Joint Use Airport (Alphabetica by State)	11y	Air <u>Carrier</u>	General Aviation	Military	<u>Total</u>	Dominant Stationed Military Aircraft
Minneapolis Jackson Meridian St. Joseph St. Louis Great Falls Lincoln Reno	MN MS MO MT NE NV	352 71 13 0 528 27 54 106	353 128 77 180 380 220 407 410	18 72 42 25 31 70 19	723 271 132 202 933 278 531 535	C-130A C-130 RF-4C C-130 F-4C F-106 RF-4C RF-4C RF-4C
City Schenectedy	NJ NY	4 79	257 277	103 28	364 384	F-106 C-130
Falls Suffolk	NY	1	366	85	452	F-101
County	NY	0	257	30	287	HC-130
Syracuse	NY	87	374	52	513	A-37B
White Plains	NY	5	486	10	501	0-2A
Charlotte	NC	184	406	14	604	C-130
Fargo	ND	29	199	32	260	F-4C/D
Mansfield	OH	Ő	200	23	223	A-7D
Toledo	OH	45	246	13	304	F-100D
Youngstown	OH	23	278	20	321	A-37B
Oklahoma						
City	0K	142	445	23	461	C-130
Tulsa	OK	143	430	26	590	A-7D
Portland	OR	226	399	69	631	F-101
llarrisburg	PA	0	307	29	336	EC-130E

2-3

Marine Marine

÷

Bolt Beranek and Newman Inc.

TABLE 2-1 (CONTINUED) AVERAGE DAILY OPERATIONS AND STATIONED MILITARY AIRCRAFT AT JOINT-USE AIRPORTS IN 19782

AVERAGE DAILY OPERATIONS

Joint Use Airport (Alphabetics by State)	e ally	Air <u>Carrier</u>	General Aviation	Military	Total	Dominant Stationed Military <u>Aircraft</u>
Pittsburgh San Juan Providence Sioux Falls Knoxville Memphis Nashville	PA PR RI SD TN TN TN	541 129 60 65 67 413 176	352 393 572 295 286 533 425	29 15 32 22 11 22	922 537 664 323 375 957 623	KC-135 A-7D C-130 A-7D KC-135 C-130 C-130
City Burlington Richmond Charlston Madison Milwaukee Cheyenne	UT VT VA WV WI WI WY	211 31 87 45 62 201 20	480 227 290 245 505 456 195	28 53 72 21 64 20 37	719 311 449 311 631 677 252	KC-135 EB-57 F-105D C-130 0-2A KC-135 C-130

مدهمة المحافظ المراجع

The table shows that joint-use airports encompass a wide range of aircraft mixes. Nine of the airports had no air carrier operations in 1978, while one of them (Chicago O'Hare) had an average of more than one every minute of the year.

Although they are quieter, and, therefore, have less impact than air carrier aircraft, general aviation aircraft represent a significant fraction of all joint-use airport operations. The percent of an airport's operations represented by general aviation aircraft increases as the number of air carriers decreases. At airports with more than 500 daily air carrier operations, about onethird of all operations are general aviation, whereas at airports with less than ten daily air carrier operations, about nine-tenths of all operations are general aviation. In spite of this, greater variety of aircraft, including those driven by single- and twinpiston engines, are found at the larger airports. It is clear that a proper description of nationwide operations at joint-use airports is a complex task.

In order to correctly take into account these variations in aircraft mix and number of operations, the joint-use airports are classified in five classes, as shown in Table 2-2. These classes are defined so as to maximize the similarity of aircraft mixes among airports of the same class, and also to group together airports with similar numbers of air carrier operations, since these are usually the dominant factor in determining total airport noise impact.

Before these classes were established, it was decided to eliminate from consideration those airports whose sole military based aircraft is the O-2A twin piston engine aircraft. This aircraft is

ł

2

í

đ

TABLE 2-2 CLASSIFICATION OF JOINT-USE AIRPORTS

Airport Code	Town		1978 daily Air Carrier <u>Operations</u> 3
Class A (O Air Carr	ier Operations)		AVG=0
BAF FOK HUF HWD MDT MFD SCH STJ VNY	Westfield Suffolk County Terre Haute Hayward Harrisburg Mansfield Schenectady St. Joseph .Van Nuys	MA NY CA PA OH NY CA	
Class B (1-39 Air C	arrier Operations)		AVG=25
ACY BGR BTV CYS DLH FAR FSM GTF IAC ILG MEI MGM SAV SUX YNG	Atlantic City Bangor Burlington Cheyenne Duluth Fargo Ft. Smith Ft. Wayne Great Falls Niagara Falls Wilmington Meridian Montgomery Savannah Sioux City Youngstown	NJ ME VT WY ND AR IN NY DE AL GA IA GA	4 29 31 20 36 29 36 39 27 1 8 13 35 30 39 23
lass C (40-99 Air C	Carrier Operations)		AVG=66
BOI CRW DSM FAT FSD JAN LNK PVD BIC	Boise Charleston Dos Moines Fresno Sioux Falls Jackson Lincoln Providence Richmond	ID WV IA CA SD MS NE RI VA	59 45 55 65 71 54 60 87

2-5

المحاج المحاج والمحاج والمراجع والمحاج و

Bolt Beranek and Newman Inc.

Report 4218

4

What are a manufactories

TABLE 2-2 CLASSIFICATION OF JOINT USE AIRPORTS (CONTINUED)

Airport Code	Town		Air Carrier Operations
Class C (40-99 Ai	r Carrier Operations (C	ontinued))	
SPI Syr Tol Tus Tys	Springfield, Syracuse Toledo Tuscon Knoxville	IL NY OH AZ TN	41 87 45 98 67
Class D (100 or mo	ore Air Carrier Operatio	ons)	AVG=299
BAL BDL BHM CLT JAX MEM MKE MSP OKC ORD PDX PHX PIT RNO SDF SJU SLC STL TUL	Baltimore Hartford Birmingham Nashville Charlotte Jacksonville Memphis Milwaukee Minneapolis Oklahoma City Chicago Portland Phoenix Pittsburgh Reno Louisville San Juan Salt Lake City St. Louis Tulsa	MD CT AL TN NC FL TN WI MN KI ICR AZ PA NY KY PR UT MO OK	200 173 122 176 184 103 413 201 352 142 1655 226 283 541 106 103 129 211 528 134
Class E (Special A	irports)		AVG=250
ANC HNL	Anchorage Honolulu	AK HI	167 332

2-7

and drawn subserves

£

1

.

· •.

: •

1.1

. .

 $\frac{1}{2}$

1

1

We want the second state of a first of the second state of a second state of the secon

small enough in size that its effect on an airport's noise exposure levels may be considered negligible, especially considering the fact that the 0-2A represents ten percent or less of the operations at these airports. The airports deleted for this reason are the following:

BTL	Battle Creek	ЯI
HPN	White Plains	ΝY
TNO	Ontario	ÇA
PIA	Peoria	IL
MSN	Madison	WI

Considering the classification of the remaining airports, the first class (A) includes those airports which have no air carrier operations. These airports are likely to be most affected by the presence of military aircraft and the least changed by the ongoing imposition of civil regulations.

The second class (B) covers those airports which have an average of 1-39 daily air carrier operations. These airports tend to have very few large turboprops or large commercial jets. Rather, they are dominated by the small turboprops and the two- and three-engine narrow-body jets, such as the DC-9 and the B-737.

The third class (C) comprises those airports which have 40-99 daily air carrier operations. Nearly half of these airports have long range aircraft such as the DC-8 and B-707, but the predominant aircraft are again the two- and three-engine narrow-bodies.

The fourth class (D) airports include the bulk of the large commercial airports in the study, those with 100 daily air carrier

2-8

المحار والمحار والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمحار والمحار والمحار والمحار

đ

NUMBER OF STREET

はいた。特別などのない。ためのためにものであります。

Frankler 10

Bolt Beranek and Newman Inc.

operations or more. Nearly all of these airports are serviced by the two-, three-, and four-engine jet airliners, and most of them are serviced by the small turboprops and twin piston aircraft, as well.

The fifth class (E) consists of airports which have a large number of aircraft embarking on long range trips. These long trips require aircraft to carry more fuel. The heavier load significantly changes their takeoff profiles, and therefore, their noise impacts are different. To identify cases where long range profiles are used in significant numbers, a detailed analysis of trip length information was made of airports at which 15 percent or more of total operations involve long range aircraft (three-engine wide bodies and all four-engine jets). The results of this analysis are shown in Table 2-3.

Assuming that a long range trip corresponds to a travel time of four or more hours, the table shows that there are only two airports where long range trips represent five percent or more of average daily takeoffs: ANC (Anchorage) with 12 percent and HNL (Honolulu), with 27 percent. These two airports were considered to constitute Airport Class E. For modeling purposes, profiles are developed for both short trip and long trip operations of the long range aircraft operating at these two airports, whereas only the short trip profile is used for Airport Classes A-D.

Table 2-4 is a summary table, showing the number of airports and the average number of daily military, air carrier, and general aviation operations in each class. The next two sections of this text describe the types of aircraft which make up these operations.

2-9

Republic Sector of the Art for the sector sector and the sector of the sector of the sector of the sector of the

11

| **(**

•••••

Bolt Beranek and Newman Inc.

محصور والمحمولية والمحارية المحرية المرتكي والمتحدث والمتعارية والمعاملة والمحمومة والمحمولية والمحرور المراجع

TABLE 2-3 PERCENT OF AVERAGE DAILY TAKEOFFS MADE BY LONG RANGE AIRCRAFT, BY TRIP LENGTH*

Airp	ort	Avg. Daily <u>Takeoffs</u>	Tri _<3_	p Len <u>3-4</u>	gth (H <u>4-5</u>	(rs.) _>5	"Long Range" Trips >4 Hrs.
ANC	Anchorage	108	0	4.9	0	11.6	11.6
BDL	Hartford	178	3.8	0	0	0.6	0.6
HNL	Honolulu	235	0	0	18.0	8,8	26.9
MSP	Minn./St. Paul	215	8.5	1.9	0	0	0
ORD	Chicago	931	13.1	7.4	0.1	1.5	1.6
PDX	Portland	155	6.5	3.9	2.6	0	2.6
PHX	Phoenix	145	10.2	4.1	0.7	3.4	4.1
SJU	San Juan	207	3.7	5.3	0.1	0.7	0.8
STL	St. Louis	302	7.2	2.9	0	0	0

* Based on national and international arrival time information given in References 5 and 6, respectively. Number of takeoffs assumed equal to number of arrivals. Long range aircraft include three-engine wide-body jets and all four-engine jets (categories 1-3 in Section 2.3 below).

。2011年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年 1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,199

and a start of the start of the

į.

باد که د ده دشته

.

TABLE 2-4 AVERAGE DAILY OPERATIONS

	Airport Class							
	A	В	0	D	Е			
	. <u></u> .							
	9	16	14	20	2			
Aircraft Type		Average	e Daily O	perations	3			
Military	20	46	44	27	51			
Air Carrier	0	25	66	299	250			
General Aviation	488	238	380	389	542			

هيده معدولك وعرجم فاللاور بالمرد بالاست

Bolt Beranek and Newman Inc.

Report 4218

1

ł

.

.

.

1.1

. .

. 4

المستحد والمستحد معاد المستحد والمتحالية والمستحر والمتحر والمتحر فالمستح مترام والمحالية والمحالية والمحالة فالمتحال فالمتحا

2.2 Military Aircraft

Table 2-5 gives a brief description of the various types of military aircraft found at joint-use airports. They range from the small O-2A two-engine aircraft, discussed above, which is stationed at five bases, to the large KC-135A aircraft powered with four turbojet engines, stationed at eight bases. The most common aircraft is the C-130 "Hercules", which is stationed at 22, or about one-third of the bases.

To model the effect of these aircraft at joint-use airports, the aircraft are arranged in groups which have similar noise characteristics and a representative aircraft is chosen to model each group (see Table 2-6). Proceeding from the noisiest to the quietest, at the head of the list is the KC-135 refueling tanker. This aircraft is in a noise category all by itself due to the size of its four powerful turbojet engines which are required to lift its tremendous gross weight, about 300,000 pounds.

Next, in terms of noise, are the various one and two engine turbojets. This category includes the F-4, F-100, F-101, F-105, and F-106 fighters and fighter-bombers, powered by Pratt and Whitney engines. It was also decided to include in this category the A-7D Corsair and the A-37B trainer, which are light attack aircraft powered by Allison turbofan and GE turbojet engines, respectively, and the EE-57 electronic countermeasure aircraft, powered by two turbojets. Since the F-4 is found at more joint-use airports than any other aircraft in the group, this aircraft is used to represent the noise and performance characteristics of the group as a whole.

2-12

محمور الماري المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع والمحمد ومحمد معام المراجع المراجع المراجع المراجع المراجع المحكم المراجع المراجع المراجع المراجع المراجع المراجع والمحمد ومحمد ومحمد محم ا

and the second second

TABLE 2-5

CHARACTERISTICS OF MILITARY AIRCRAFT STATIONED

AT JOINT USE AIRFIELDS*

						Joint
Air	craft Name	Mission	I No	Engine <u>Type</u>	G.Wt. 1000 1b.	Use Air- fields
KC-13	5 Stratotanker	Refueling tanker	4	P&W J57 turbojet	297	8
C-130	Hercules	Transport	4	Allison T56 turboprop	175	22
F-4	Phantom II	Fighter- bomber	2	P&W J79 turbojet	57	13
F-105	Thunderchief	Fighter- bomber	†	P&W J57 turbojet	53	2
F-101	Voodoo	Intercepter fighter	2	P&W J57 turbojet	47	2
EB-57	Canberra	Electronic Counter- measure	2	P&W J57 turbojet	46	2
A-7D	Corsair II	Light attack	1	Allison TF41 turbofan	42	8
F-106	Delta Dart	Intercepter fighter	1	P&W J57 turbojet	35	4
F-100	Super Sabre	Fighter- bomber	1	P&W J57 turbojet	35	5
C-7	Caribou	Transport	2	P&W R200 piston	29	1
HH-3	Jolly Green Giant	Rescue helicopter	2	GE T58 turboshaft	22	2
A-37B	Dragonfly	Light attack trainer	2	GE J85 turbojet	14	3
HH-1 H	Iroquois	Rescue helicopter	1	Lycoming turboshaft	10	1
02-A	Skymaster	Recon- naissance	2	Cont. 10-360 piston	5	5

*Arranged in order by maximum gross takeoff weight. Data includes Air Force Reserve and Air National Guard Squadrons from Ref. 2.

2-13

ł

1 -

i.

÷

Bolt Beranek and Newman Inc.

TABLE 2-6 CATEGORIES OF MILITARY AIRCRAFT

Aircraft <u>Category</u>	<u>Characteristics</u>	Engine	<u>Aircraft*</u>	Designation
I	Heavy Tanker	Turbojet	<u>Stratotanker</u>	KC-135
II	Fighter .	Turbojet and Turbofan	Corsair II Dragonfly <u>Phantom II</u> Super Sabre Voodoo Thunderchief Delta Dart Canberra	A7D A37B F-4 F-100 F-101 F-105 F-106 BB-57
III	Transport and Helicopter	Turboprop	<u>Hercules</u> <u>Transport</u> Jolly Green Giant Heli- copter	с—1 30 IIH—3

*The aircraft chosen to represent each aircraft category in the noise exposure model is underlined.

2-14

ومحافظة والمناجعة والمناجعة والمحافظ والمحاصر والمحاصر والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ

After these two groups, two different aircraft types remain: transports and helicopters. The primary aircraft in this category is the C-130 Hercules transport, powered by four Allison turboprop engines. A similar but somewhat less noisy light transport is also included, the C-7 Caribou, powered by two Pratt and Whitney piston engines. Two turbo-powered helicopters, the HH-3 Jolly Green Giant and the HH-1H Iroquois, complete the group. Since the C-130 is the dominant aircraft at 22 joint-use airports and the other three types of aircraft are only found at four airports, the noise and performance characteristics of the C-130 are used to apply to all aircraft in this group.

Military aircraft represent from 0.5 to 32 percent of operations at joint-use airports. This percentage tends to decrease as the number of air carrier operations increase. A breakdown of operations at each airport class by military aircraft category, time of operation, and itinerant or local operation, is shown in Table 2-7. Here, local operations represent practice pattern flights such as touch-and-go landings. These operations have a somewhat greater impact than straight-in and straight-out itinerant operations because they impact land areas close to the airport at relatively low altitudes during level flight as well as during takeoff and landing.

2.3 Civil Aircraft

Two types of civil aircraft are treated in this section, air carriers and general aviation. According to the Official Airline Guide,⁵ there are over 40 different types of aircraft utilized in air carrier operations at joint-use airports at the present time. They range from the largest airliner in the world, the Boeing 747 Jumbo Jet, which has a gross weight of up to 800,000

2-15

والمرور والمعادين والمعالية ومعالية المحاولة والمادين والمتكافئة المتساعية

: *

: :

TABLE 2-7 NUMBER OF DAILY MILITARY OPERATIONS IN EACH AIRCRAFT CATEGORY, BY AIRPORT CLASS AND TIME OF OPERATION

			Itine	rant		Local	
Airport	Time of		MB	llitary_	Aircraft	Category	
<u>Class</u>	Operation	I	<u> </u>	III	<u> </u>	<u> </u>	III
A	Day	0.0	4.03	6.31	0.0	2.28	7.41
	Nt.	0+0	0.08	0.13	0.	0.05	0.15
В	Day	1.28	14.70	3.49	2.51	19.11	3.73
	Nt.	0.03	0.30	0.07	0.05	0.39	0.08
С	Day	0.84	16.94	2.52	0.70	16.31	6.23
	Nt.	0.02	0.35	0.05	0.01	0.33	0.13
D	Day	3.63	10.17	4.29	1.11	5.29	2.19
	Nt.	0.07	0.21	0.09	0.02	0.11	0.04
Е	Day	0.0	39.69	2.45	0.0	7.48	0.49
	Nt.	0.0	0.81	0.05	0.0	0.02	0.01

2-16

مستعمرتهم والمناسبة المتحافظ والمتعادية والمستان والمتحال والمتحص والمتعالية والمستعانية ستعار والمستعار المستع

pounds, to one of the smallest, the Piper Cherokee, which weighs less than 2000 pounds. To specify the noise and performance characteristics of each aircraft in the noise exposure model would be an exhaustive task; therefore, they are combined into 13 categories which have similar noise producing characteristics, and a representative aircraft is chosen to represent each group in the model.

The 13 categories are listed in Table 2-8 along with the aircraft which are included in each category and the code or codes by which each aircraft is designated in the Official Airline Guide.⁵ The first six categories are simply a standard classification of jet airliners by number of engines (two, three, or four) and size of aircraft (wide-body or narrow-body). The next four categories, (seven to ten) are turboprop business jets arranged by engine type (Dart and Other, Allison, or PT6). The PT6 engine category is further broken down by takeoff weight (under 12,500 pounds and over 12,500 pounds). The next two categories (11 and 12) include all light aircraft powered by twin- and single-piston engines, respectively. The final category (13) includes two models of aircraft approaching obsolescence which do not fit well into the other categories, the Lockheed Electra and Constellation. Representative aircraft are chosen for each category on the basis of data availability and the relative importance of the aircraft in the group.

The percent of operations in each category was derived for each airport class by examining the Official Airline Guide's North American Edition⁵ and Worldwide Edition⁶. The number and time of arrival of each type of aircraft was tabulated for each airport. These values were then grouped into the thirteen air carrier categories, two time periods (day and night), and the five

2-17

and the first states

TABLE 2-8 CATEGORIES OF AIR CARRIER AIRCRAFT

Aircraft Category	No. of Engines	<u>Characteristics</u>	Aircraît*	Airline <u>Guide Code</u> 5
١	4	Wide Body	Boeing 747	747,74L
2	4	Narrow Body	<u>Boeing 707</u> Boeing 720 McDonnell- Douglas DC8	707,70M B72 DC8, D8S
3	3	Wide Body	McDonnell- Douglas DC10 Lockheed L1011	D10 L10
4	3	Narrow Body	Boeing 727	727,72M,72S
5	2	Wide Body	AirBus A300B	AB3
б	2	Narrow Body	Boeing 737	737,73M,73S
			Corporation BACIII McDonnell- Douglas DC9	B11 DC9,D95,D95
7	2	Turboprop Dart Engine	McDonnell- Douglas DC3 Fokker F-227 Fokker-All Types Hawker-Siddeley 748 Grumman Gulf- stream 1 G159 Namco YS11	DC3 FK7 FKF IIS7 GRS YS1
8	2	Turboprop Allison Engine	Convair-All	CVR
9	2	Turboprop >12,500 lb	Nord 262 Short-Harland	ND2
		PT6 Engine	<u>SD3-30</u> Nord 298	SH3 298

2-18

مىمى بىرى ئەر بايلىق ۋېرىلىكىم تەرىپى ئارىكىلىچىنى ئايا ئىلىمى دىغا يە تىلىپى سىيىسىيىسىيە سىيىت مەر مەر مەر م

ł

÷

÷

Para attanta ta far in a

- そうそうな、 - などではなななが、 このこのであるとなるのでは、「「ななないのです」」はなるのであるのではないです。 - 含肥水

Bolt Beranek and Newman Inc.

TABLE 2-8 (CONTINUED) CATEGORIES OF AIR CARRIER AIRCRAFT

Aircraft Cetegory	No. of Engines	Characteristics	ai roraft*	Airline Guide Code5
Jacopory	Dirganca	0111110001101100	<u>Attoldiu</u>	00100 0000
10	2	Turboprop	Beech 99	B E9
		<u><12,500 lb</u>	Beech-All	
		PT6 Engine	Types	BEC
			Beech-All	
			Turbo	BET
			DeHavilland	
			Canada	DHC
			Dehavilland	
			Twin Otter	DHT
			Baneirante	EMB
			Handley-Page	
			Jetstream	HPJ
			Swearington-	
			Metro	SWM
11	2	Piston	Beech Twin	
			Bonanza	BEO
			Beech Queen	
			Air 80	BEQ
			Beech T-18	BET
			Cessna 402	CN4
			Cessna All	
			Types	CNA
			DeHaviland	
			Heron	DHH
			DeHaviland	
			R400	DHR
			Grumman G 21A	GRG
			Piper Chieftan Piper-All	PAF
			Types	PAG
			Piper Navajo	PAN
			Piper Seneca	PAS
			Piper Aztec	PAZ
			Props-All	
			Types	PRP
			Ted Smith	••••
			Aerostar 601	TS6
		~	1.0	

2-19

مراد جردورة لعري وأوروبهم وسطو ليتحدد ومح

.....

Bolt Beranek and Newman Inc.

TABLE 2-8 (CONTINUED) CATEGORIES OF AIR CARRIER AIRCRAFT

Aircraft <u>Category</u>	No. of Engines	<u>Characteristics</u>	Aircraft*	Airline <u>Guide Code</u> 5
12	1	Piston	Cessna 207 Piper Cherokee	CNT PAC
			Engine	(none)
13	4	Miscellaneous	Lockheed Electra	LOE
	2		Lockheed Constellation	L07

* The aircraft chosen to represent each aircraft category in the noise exposure model is underlined.

2-20

مستعنا يغولون والمحاربة والمحارب والمراجب والمحارثين والمعارضا والمعادي والمحار والمعار والمعاري والمعاري والمع

12. To the Construction of the

airport classes. The percentage of all operations in each class was then computed, as shown in Table 2-9. When combined with the average number of daily air carrier operations listed in Table 2-2, these values will determine the number of air carriers of each type to be used in the AVport analysis.

General aviation operations at joint-use airports also comprise a wide range of aircraft types. Since these aircraft are less noisy and therefore have less impact on the surrounding population than air carriers, it is not necessary to model the detailed differences between types. Instead, three general aviation categories are defined. These are busness jets, twin-engine piston aircraft, and single-engine piston aircraft. A composite aircraft, representing the wide variety of aircraft types in each group, was developed for each category for modeling purposes.

The percent of aircraft in each of these three categories is derived from a brief telephone survey of tower operators at AVport A airports. The survey showed that approximately 13% of all operations are busness jets, 30% are twins, and 57% are single propeller aircraft. There are no published data to indicate how these percentages further divide into local and itinerant operations, so this breakdown is determined as follows. According to Table 2-6, approximately 50% of all general aviation operations are local operations and 50% are itinerant operations. If aircraft in each category flew the same portion of local flights as itinerant flights, the percentage breakdown would be 13% jets, 30% twins, and 57% single props for both local and itinerant operations. However, although definitive estimates are not available, it is expected that the single engine props represent a greater proportion of local operations than they do itinerant operations, and

2-21

a second s

						Alr	Carrier	· Airera	aft Cate	gory					
Air-				Je	ets			La	rge Prop	S	Sa	all Prop	3	LgPrp	
port <u>Clas</u> s	Time	747 _1_	707 _2	$\underline{3}$	727 _4_	A 300 _5	DC9	$\frac{11S7}{7}$	$\frac{CVR}{8}$	SD3 9	DHC 10	PRP2 	PRP1 _ <u>12</u>	$\frac{10E}{13}$	<u>Total</u>
В	Day	0	1,56	0.78	14,71	0	32.54	1.12	11.47	1.12	21.34	3.01	0.28	0	87.93
	Nt.	0	0	0	3,06	0	5.07	0	1.17	0	2.39	0.39	0	0	12.03
С	Day	0	2.26	0	25.17	0	39.79	6.30	4.70	2.87	5.77	3.73	0	0	90.59
	Nt.	0	0.30	0	3.23	Û	4.39	0.69	0.19	0	0.17	0.41	0	0	9.38
D	Day	0.31	4.99	3.74	32.59	0.0004	30.27	2,87	2.09	0.65	8.83	5.49	0,07	0.01	91.91
	Nt.	0,26	0.62	0.86	3.50	0	2.38	0.05	0.10	0.02	0,06	0.19	0,02	0	8.06
Е	Day	7.13	1.90	7.00	10.57	0	31.40	1.41	0	0.58	18.34	14.04	٥	1.04	93.41
	Nt.	1.58	0,57	1.41	0.52	0	1.70	0	0	0	0.81	0	0	0	6.59

TABLE 2-9 PERCENT OF OPERATIONS IN EACH AIRPORT CLASS, BY AIR CARRIER AIRCRAFT CATEGORY AND TIME OF OPERATION*

*Data based on arrival information listed in Reference 5. Total day and night percentages may not add up to 100 percent due to rounding.

•

....

.

business jets and twin props represent a smaller portion of local operations than itinerant operations. With these assumptions, the following distribution of aircraft is assumed for our study:

General Aviatio

1

in the second second

Aviation		Percent of O	perations
Category	Aircraft	<u>Itinerant</u>	<u>Local</u>
1	Business Jets	15%	10%
2	Twin Props	35%	25%
3	Single Props	50%	<u>65%</u>
	Total	100%	100%

The above distribution is assumed to apply to general aviation aircraft in all airport classes, and is in reasonable agreement with flight data from other sources.⁹ The number of nighttime operations by general aviation aircraft was found, in the telephone survey, to be approximately 1% of all itinerant operations. This value is assumed to apply to each airport class. It is assumed that there are no nighttime local operations. By applying the distribution values discussed above to the average daily operations of general aviation aircraft shown in Table 2-4, the average number of operations in each aircraft category are obtained, as shown in Table 2-10.

2.4 Runway, Flight Track and Profile Characteristics

In this section, average runway, flight track, and flight profile characteristics are formulated for aircraft in each airport class. A variety of runway configurations and flight patterns are found at the joint-use airports under study. Runway lengths vary from 3,500 feet to 13,000 feet. Practice flight patterns differ greatly from airport to airport, reflecting differences in surrounding terrain, local wind conditions, and locations of noise-sensitive

2-23

TABLE 2 - 10

AVERAGE NUMBER OF GENERAL AVIATION OPERATIONS IN EACH AIRCRAFT CATEGORY, BY AIRPORT CLASS AND TIME OF OPERATION (1)

		General Aviation Alreraft Category						
Airport	Time of	Itinerant			Local			
<u>Class</u>	<u>Operation</u>	Bus.Jet	Lg. Prop.	Sm. Prop.	Bus.Jet	Lg, Prop	Sm. Prop.	<u>Total(2)</u>
Α	Day	38.3	89.4	127.8	23.0	57.5	149.4	485.4
	Night	0.4	0.9	1.3	0	o	O	2.6
В	Day	19.9	46.4	66.3	10.4	26,0	67.6	236.6
	Night	0.2	0.5	0.7	0	0	0	1.4
С	Day	36.6	85.4	122.0	13.4	33.4	86.8	377.5
	Night	0.4	0,9	1.2	0	0	0	2.5
D	Day	51.4	119.1	170.2	4.5	11.3	29.4	385.6
	Night	0.5	1.2	1.7	0	0	0	3.4
E	Day	49.5	115.4	164.8	20.9	52.3	135.9	538.7
	Night	0.5	1.2	1.7	0	0	0	3.3

Values based on percent distributions discussed in text and on average totals given in Table 2-4.
 Numbers may not add to totals due to rounding.

2-24

.

population areas. Takeoff and approach profiles are also influenced by differences in these conditions to some degree, as well as by differences in aircraft weights, pilot habits, airline recommendations, and other features of the particular aircraft being flown.

Runways and Flight Tracks

The number and orientation of runways at the various joint-use airports cannot be "averaged" in a simple way. No single configuration could be said to model the variety of conditions that exist. Nevertheless, the model which is described below may be expected to produce a noise contour of similar size as contours from actual configurations.

In the model, there is only one large runway. Flight tracks for military aircraft are assumed to follow those of air carrier aircraft, while general aviation aircraft are assigned separate flight tracks.

Flight tracks for military and air carrier aircraft are shown in Figure 2-1 for AVports A, B, and C, and in Figure 2-2 for AVports D and E. A single local pattern flight track is shown for military aircraft traveling in a counterclockwise direction. All local military operations are assumed to follow this path. Itinerant aircraft are assumed to approach and depart the single runway in both directions. Three approach paths and three departure paths are defined in each direction, one which goes straight out from the runway, and two others which branch to the right and left. The approach and departure angles, turn radii, and percent distribution values for these itinerant flights are derived from

2-25

÷

1

المراجع والمراجع المراجع المحافظ

Bolt Beranek and Newman Inc.

Reference 1, in which a survey was made of airport flight tracks. In that study, two flight track configurations were developed whose runway lengths closely match the average runway lengths of AVports A, B, and C and AVports D and E, respectively. All military and air carrier aircraft are assumed to follow the flight track distributions shown in the two figures.

A separate set of flight tracks is defined for general aviation aircraft. These flight tracks are shown in Figure 2-3. Again, three departure paths and three approach paths are defined for all itinerant general aviation operations. In addition, a single rectangular flight pattern is defined for all local operations.

The sensitivity of the contour areas to changes in the percent distribution of operations along the various flight tracks was examined in four test runs. Two of these involved air carrier operations at AVport D, and two involved general aviation operations at AVport A. The first air carrier test run considered the case in which no turns were made. All aircraft were assumed to follow straight-in and straight-out approaches and departures. The second air carrier run considered the case in which no aircraft made straight-in and straight-out approaches and departures; rather, all aircraft made turns either to the right or to the left. The results of this test evaluation are shown in Table 2-11.

In the first test involving changes in general aviation flight tracks, the departure path which makes a 45° angle turn to the left was changed to make a 45° angle to the right. In the second test, operations were assumed to travel in both directions at a ratio of 2:1. These results are also shown in Table 2-11.

2-28

فتستعص ومراكبتها والمركب والمركب والمتعاد والمتحد والمتحد والمتحد والمحافظ والمتحد والمحاف والمحاف والمحاف

Note: Percentages Indicate Portion of All Approaches or All Departures Using That Track. Turning Radii = 900' for 90° Turns, 1000' for 45° Turns. Data From Ref. 8.

FIGURE 2-3. FLIGHT TRACKS FOR GENERAL AVIATION OPERATIONS

.

the same and the second states of the second states and the second states and

TABLE 2-11SENSITIVITY OF CONTOUR AREAS AND POPULATION TO CHANGES IN AIRCARRIER AND GENERAL AVIATION FLIGHT TRACK DISTRIBUTION

		<u>Air Carri</u>	iers Alone	<u>General Avia</u>	tion Alone
	DNL	Straight	Turn	1/3 Opposite	Change 1
	Contour	In-Out Only	In-Out_Only	Direction	T/O Track
AREA			Percent Change	from Baseline	(%).
	75	0.0	0.0	1.3	0.0
	70	0.0	0.3	3.2	-0.6
	65	4.7	0.2	-2.5	-3-9
	60	12.8	2.4	11.3	3.0
	55	5.3	4.0	7.7	5.2
POPULATIO	ОИ				
	75	-8.8	0.0	66.7	0.0
	70	-7.1	0.0	51.4	0.0
	65	-1.6	0.7	15.4	-5.8
	60	7.9	2.2	24.8	Q.4
	55	-0.9	5.0	28.0	-5.3
AREA		Equivalent No	ise Level Chang	e from Baselin	e*(dB)
	75	0.0	0.0	0.1	0.0
	70	0.0	0.0	0.2	0.0
	65	0.3	0.0	-0.2	-0.3
	60	0.8	0.2	0.7	0.2
	55	0.3	0.3	0.5	0.4
POPULATIO	N				
	75	-0.6	0.0	2.9	0.0
	70	-0.5	0.0	2.4	0.0
	65	-0.1	0.0	0.8	-0.3
	60	0.5	0.1	1.3	0.0
	55	-0.1	0.3	1.4	-0.3

* Changes in noise level which would yield the same changes in area and population as the indicated changes in flight track distribution.

بالمنابع وليهدد وتبهده والم

2-30

يستعريهم والمرافق وأربعه ورواق والمرافعة والمراجعة والمحاجمة والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

The results of the sensitivity analysis show that the contour areas change very little if flight tracks are shifted, or aircraft are operated in a differend direction. The maximum change in area is 12.8% for air carrier changes and 11.3% for general aviation changes. The increase in noise level which would be required to achieve these changes is less than 1 dB. Since the uncertainty in aircraft noise levels and other features of our model is of this magnitude or greater, it may be concluded that the sensitivity of the results to assumptions of flight path and direction is sufficiently low. The maximum change in population within any one contour is 3.8% for air carriers and 66.7% for general aviation, corresponding to changes in noise levels of 0.6 dB and 2.9 dB, respectively. The unusually high value for general aviation is due to the fact that population densities vary greatest at close distances from the airport. Therefore, for airports with a small number of quiet aircraft operations, such as AVport A, small changes in flight patterns may yield large percentage changes in the population within various contours. Since these contours will be overshadowed by military operations in the case of AVport A, and by military and air carrier operations in the case of the other AVports, the values shown are not indicative of the sensitivity of the model in its actual operating modes.

Profiles

Profile and performance data for military aircraft was gathered from BBN files. The flight procedures used to model civil aircraft at joint-use airports are based on the Airline Transport Association (ATA) Flight Procedures revised in December 1976. The takeoff profile and performance information associated with these procedures are illustrated in Appendix A. The average gross weights used for the jet airliners (Categories 1-6) are shown in

2-31

We want the second strategy and the second second

With the site we

Table 2-12. Note that two gross weights are defined for Categories 1-3, corresponding to short range and long range operations. The long range aircraft are only used in AVport E (see Section 2.1).

Approach profiles for civil aircraft are assumed to be 3° for all 3 military categories, air carrier categories 1 through 10 and 13, and general aviation category 1. A 4.5° approach glide slope is assumed for air carrier categories 11 and 12 and general aviation categories 2 and 3. Full flaps are assumed for all aircraft land-ings.

2.5 Population Characteristics

والمسترجين مسامر مستعمل مستعد متعلم منابعتها والمنافع والمنافع والمنافع والمنافع والمنافع والمنافع والمنافع والمتحا والمحاصل والمنافع والمحاصل والمنافع والمحاصل والمنافع والمحاصل وا

In this section, population density values are calculated for each AVport class as a function of distance from the airport. The population around airports varies in a characteristic way. Within the first one or two miles of the center of the airport, the population density is typically very small since the area underneath the approach and departure paths must be free from buildings, and other areas close to the airport runways are put to nonresidential use. As one moves further from the airport center, the population density increases until, at a point between three and five miles from the airport center, the maximum population density is usually reached. This distance represents the distance between the airport and the center of the nearest town. After this point, the population density decreases more or less uniformly until a point is reached at which the airport noise is no longer impacting the population.

The variation of population density with distance from the airport center is shown for each airport class in Figure 2-4. In the

2-32

مىسىمىلىيى بېرىيىيە بىرى ئىڭ ئىچى بىرى بىرى بىرى بىرى بىرى بىرى يىلى بىرى بىرى بىرى بىرىيە بىرىيە بىر

Ţ

Bolt Beranek and Newman Inc.

Report 4218

A CALL AND A DECK

TABLE 2-12

AVERAGE GROSS WEIGHTS USED IN THE MODEL FOR JET AIR CARRIERS

Air Carrier	Representative	Average Gross Weight
<u>Category*</u>	Aircraft	(1000 1b)
l L	747	720
3		640
2 L	707	300
S .		230
3 L	DC-10	440
S		370
4	727	156
5	A300	302
6	DC-9	92

* L indicates long range (4 or more hours travel time). S indicates short range (less than 4 hours travel time).

Andreas and a state of the second state of the second

2-33

FIGURE 2-4. POPULATION DENSITY AROUND AIRPORTS AS A FUNCTION OF DISTANCE FROM CENTER OF RUNWAY, BY AIRPORT CLASS⁴

÷

Statistical and the

model of population impacts, an average population value is assigned to the center of each one-mile-wide band around the airport. Grid points falling between the centers of the specified one-mile-wide bands are assigned population density values which are proportionate to their position relative to the centers of the two bands. In this way a smooth transition is made between the different population density values. Population densities in each one mile band are shown in Table 2-13.

TABLE 2-13

POPULATION DENSITY AROUND AIRPORTS,

BY CLASS AND RADIAL DISTANCE FROM RUNWAY (PEOFLE PER SQUARE MILE) 4

	DIST/	NCE OF	OUTER EDO	E OF ON	E-MILE-WI	IDE BAND	FROM CEN	ITER OF	RUNWAY	(MILES)
AIRPORT CLASS	_1		3	4	5	<u> </u>	7	8		10
A	0	0	380	910	1,240	610	120	130	470	70
В	0	430	550	560	430	670	360	320	300	290
с	0	1,030	1,300	1,230	980	910	890	620	520	400
D	280	1,540	2,260	2,350	2,210	2,030	1,960	1,550	1,520	1,250
E	0	1,380	1,145	2,025	1,325	1,100	895	935	715	225

2-36

Bolt Beranek and Newman Inc.

3.0 NOISE EXPOSURE COMPUTATION METHOD

In this section, three portions of the noise exposure computation method are described. These elements are (1) define noise regulation scenarios (Section 3.1), (2) run the computer model of noise exposure (Section 3.2), (3) scale the results to a nationwide basis (Section 3.3).

3.1 Noise Regulation Scenarios

The noise impacts around joint use airports are analyzed under five noise regulation scenarios or stages. At each stage, only civil aircraft noise levels are changed. The analysis year, population densities, fleet size, aircraft mix, flight paths and flight procedures remain the same, as described in Section 2. Under these conditions, the analysis does not predict actual noise exposures in the future, but rather it helps one visualize the relative importance of military aircraft noise under successively strict civil noise regulation conditions.

The five scenarios described in this section are termed as follows:

Bas	seli	e	Stage	1	
69	FAR	36	Stage	2	
75	FAR	36	Stage	3	
80	FAR	36	Stage	4	
85	FAR	36	Stage	5	

Stage 1

ALC: NOT A STOCK

ないな物性に対応した。のでのないなりのに対応することではない。

Charles and the second

Aircraft noise levels in this baseline scenario are based on typical equipment in use at the current time (calendar 1978 is the

3-1

Bolt Beranek and Newman Inc.

analysis year). Although this is termed the baseline case, most current civil aircraft also conform to the Stage 2 noise regulations. Therefore, there is not much difference between Stages 1 and 2. Since only one aircraft type is used to model each category, a number of older, noiser aircraft in use are ignored, such as the "blow indoors" version of the Boeing 747.

The noise limits for Stages 2-5 are shown in Figures 3-1 (Takeoff), 3-2 (Sideline), and 3-3 (Approach) in terms of EPNL as a function of maximum aircraft weight.

Stage 2

The 69 FAR 36, or Stage 2 FAA noise regulations are met by all aircraft except the Boeing 707 and 727, and the McDonnell-Douglas DC-9. These three aircraft are altered to meet Stage 2 levels by assuming they are fitted with quiet nacelles.

Stage 3

كالمستعمد والمستعدين والمعالية المتعادية والمترك والأولاء والمترو بالمتلا والمتعادية والمعالية والمتعادية والمعالية والمتعادية

For all aircraft used in Stage 2 which exceed the 75 FAR 36 or Stage 3 FAA noise rules, a noise reduction was applied as follows. First, the differences between the aircraft's takeoff, sideline, and approach noise levels and the corresponding Stage 3 limits at these points, were determined. The largest of these differences was then applied to the aircraft's noise versus distance curves. As a result, the modified aircraft meet the limits at two of the three points with some margin, and meet one of the limits with no margin. Although this method of deriving noise levels for aircraft under strict noise control involves simplifying assumptions, such as the assumption that no tradeoffs are

and a start of the second s

<u>4</u>−£

المربية المربعين والإكراد أستراعك سمادو والمهرجات محاله

والمعام ومعاد والمعاد المعادية والمعادية والمعادية والمعادية والمعاد المتأو والمعادية والمعادية والمعادية والمع

ω -5

made among the three measurement points in order to reach compliance, it is straightforward, appears to give reasonable results, and is appropriate for the purposes of this study.

As Table 3-1 shows, noise reductions are applied to aircraft in categories 2, 4, 5, and 6 in order for them to meet Stage 3 regulations.

Stage 4

1

The 80 FAR 36 noise limits were proposed by the EPA to the Federal Aviation Administration (FAA) in 1976 and were published as an FAA Notice of Proposed Rulemaking 76-22. As Table 3-1 shows, a noise reduction is required of all aircraft categories except the light turboprops, twin props, and single props, in order to meet the Stage 4 regulatory limits. These limits refer to the quietest available technology.

Stage 5

Bandana haran a fan haran a fan ar he a

The 85 FAR 36 limits were also proposed by the EPA to the FAA. Again, all categories except light props, twin props, and single props are affected. These limits refer to quiet future technology.

3.2 Computer Program (NOISEMAP)

The NOISEMAP computer program is a comprehensive set of computer routines for calculating noise exposure contours for airport operations developed by Bolt Beranek and Newman. The program permits calculation of the noise environment in terms of day-night level (DNL), noise exposure forecast (NEF) or community noise equivalent

3-6

the second second second

TABLE 3-1

REDUCTION IN EPHL FROM PREPRESENTATIVE AIRCRAFT NOISE LEVELS TO MEET NOISE LIMITS OF SCENARIOS*

Civil		Scenarios	Noise Redu	lction Appl	ied To
Aircraft Category	Representative 	Where Aircraft Are Used	Represent To Meet N	raft to s, dB	
			<u>Scenario 3</u>	Scenario 4	<u>Scenario 5</u>
<u>Air Carrier</u>	Aircraft				
1	747	1-5	0	-7.8	-11.8
2	707	1			
	707QN	2-4	-9.5	-14.3	-19.3
3	DC-10	1-5	0	-5.3	- 8.3
4	727	l			
	727QN	2-5	-5.2	-8.2	-12.5
5	AB300	1-2			
	DC-10	3-5	-1.7	-4.6	- 7.6
6	DC-9	1			
	DC-9QN	2-5	-6.0	-6,1	-11.1
7	MS748	1-2			
	CV580	3-5	0	-3.9	- 7.9
8	CV580	1-5	0	_3.9	- 7.9
9	SD3-30	1-5	0	-7.0	-11.0
10	DHC-6	1-5	O	0	0
11	Twn Composite	1-5	0	0	0
12	Sgl Composite	1-5	0	0	0
13	Electra	1-5	0	-3.6	- 7.0
General Avia	tion_				
Gl	Bus Jet Composit	te 1-2			
	Lear 35/36	3-5	0	-2.6	- 6,1
G2	Twn Composite	1-5	0	0	0
03	Sgl Composite	1~5	0	0	0
* Noise red	uction values show	wn enable aircr	aft to meet	all three	limits
in given	scenario (takeoff	, sideline, and	approach).	No noise	reduction
is needed	to meet Scenario	2 limits. Sym	bols are de	fined as f	ollows:
Ai.	rcraft not used in	n this scenario	•		
0 No	noise reduction a	required to mee	t limits.		
ୟମ କଥା.	iet nacelle engine	e noise treatmei	[16.		
		3-7			

Parent of a sub

ţ

ł

ì

Bolt Beranek and Newman Inc.

levels (CNEL). With simple modification of input data, NDISEMAP also can develop noise level contours, typically in terms of effective perceived noise level (EPNL) or sound exposure level (SEL), for individual aircraft operations.

The program and underlying technical concepts are very well documented in technical reports.^{10,11} A thorough revision of the program operator's manual reflecting the latest program changes and extensions is provided in Reference 12.

Basic noise information for military aircraft modeled in the program are documented in reports prepared for the U.S. Air Force Aerospace Medical Research Laboratory.¹³ Basic noise and performance characteristics for major civil aircraft modeled in NOISEMAP were collected and described in several reports prepared for the EPA.¹⁴,¹⁵ The civil aircraft noise and performance data used in this report includes the latest reviewed and updated information.

3.3 Method of Scaling Results

ومستحمد ومحاجز ومحاجزته والمحاجز والمحافظ والمحافظ والمراجع والمحاج والمحاج والمحاج والمحاج والمتحاف والمحاف

Day-night level contours were computed for each AVport for the following groupings of aircraft:

- (a) Military operations, separately for the KC-135, F-4, and C-130 aircraft.
- (b) Civil operations, separately for civil jets, large props and small props, and totals.
- (c) All operations, separately for the KC-135, F-4, and C-130 aircraft.

3-8

الاعواق ويتهين والمراجع والمراجع والمراجع والمعامية المتعار المتحافية والمعامية والمتعام فتعملهم

Bolt Beranek and Newman Inc.

For each AVport, groupings (b) and (c) were analyzed for each of the five stages. Grouping (a) contours do not change with regulatory stage and therefore were only analyzed once.

Once contours were obtained for the average airport (AVport) in each class, the next step was to find the total contour area for all the individual airports within each class. Since each airport has its own unique mix of civil jets and props, general aviation and military aircraft, a simplifying analytical technique was used to estimate airport contours. This technique is based on the premise that the primary contributors to joint use airport noise contours are the dominant military aircraft and civil jets. Τn the analysis discussed below it has been assumed that the military aircraft is the dominant contributor and the civil jets are secondary. The analysis can be performed for the reverse situation, yielding similar results. It can also be extended to include three varieties of aircraft if necessary. Although only contour area estimates are described in the equations below, the same analysis applies to our estimates of exposed population.

The basic assumption in the analysis is that the contour area for the operations of any major class of aircraft, and, indeed, for the airport as a whole, will follow the general expression

log(contour area) = a + b log (number of operations) (3.1)

OF

the state with

j.

5

1 Martin Alice

contour area = $10^{a} \cdot (\text{number of operations})^{b}$ (3.2)

For a given airport, one can compute the contour areas for different aircraft types and in general one will find that the values of

3-9

Bolt Beranek and Newman Inc.

<u>b</u> will not differ markedly between the aircraft classes except for very small contour areas. If one plots the contour areas for different day-night level values for a given aircraft type, the plot can be interpreted in terms of showing the variation in day-night level as the number of operations are varied.

Now consider the case where the total airport contour is largely, but not completely, dominated by the operations of two classes of aircraft, civil jets and a particular military aircraft. Let A(M), A(J), and A(T) represent the area within a given DNL contour for a specified AVport for operations of M, J, and T types of aircraft, where (M) denotes military operations, either KC-135, F-4, or C-130 aircraft, (J) denotes civil jet operations only, and (T) denotes all operations at the airport (civil jet, civil propeller and military). Then let N(M), N(J), and N(T) represent the average daily number of operations of the M, J, and T types of aircraft.

Let subscript \underline{i} denote the ith airport within a given class of airports, and subscript \underline{o} denote the AVport within that class of airports for which contour areas were calculated.

From the contour area calculations, $A(T)_{O}$, $A(J)_{O}$ and $A(M)_{O}$ are known for DNL values of 55, 60, 65, 70 and 75 dB. From plots of $A(J)_{O}$ and $A(M)_{O}$ versus DNL, best fit regression lines can be calculated to determine:

$$\log(A(M)_0) = a_M + b_M \cdot \log(N(M)_0)$$
(3.3)

and

สร้างให้สร้างผู้สึกสาพันการแห่งได้สร้าง ที่สามาริการสร้างสามารถไทยการสุดและสังการและการสาทางการสามารถ

$$\log(A(J)_0) = a_J + b_J \cdot \log(N(J)_0)$$
(3.4)

3-10

فتحرير بالمرابط والمرابط والمرابط والمراب والمحاب بالمحاف والمحافية والحافية المرابط والمحافظ منافعات المحام

Bolt Beranek and Newman Inc.

Because of the relatively small areas calculated for the 75 dB contours, these values were usually not used in determining regression line fits. The regression lines determined from the other four points were used to derive areas and populations for all contour values from 55 to 75 dB.

Assuming that $A(M)_0$ is greater than $A(J)_0$, one can determine the trading relationship between numbers of civil and military aircraft operations for contour area. The number of civil jet operations $x(J)_0$ needed to generate a given military contour area is given by:

$$\log(A(M)_{O}) = a_{J} + b_{J} \log(x(J)_{O})$$
 (3.5)

therefore,

Report 4218

$$\log(x(J)_{0}) = \frac{\log(A(M)_{0}) - a_{J}}{b_{J}}$$
(3.6)

or,

.J

and the second second

$$x(J)_{0} = (A(M)_{0} + 10^{a_{J}})^{1/b_{J}}$$
 (3.7)

Now form the ratio r_{CM} where

$$r_{\rm CM} = \frac{N(M)_{\rm o}}{x(J)_{\rm o}}$$
(3.8)

The ratio r_{CM} establishes the trading relationship between numbers of civil and military aircraft, and allows one to express the civil operations in terms of an equivalent number of military operations. For each airport in a given class, the civil contribution, in terms of military operations can then be added to the military contribution, also in terms of military operations, to

3- 11

Bolt Beranek and Newman Inc.

obtain a total equivalent number of military operations. At this point, note that operations from air carrier and general aviation aircraft may contribute to the contour area. Assuming that these contributions are small and fixed, a final working expression can be developed allowing one to estimate contour areas as the number of civil and military operations are varied. Set

$$\log(A(T)_0) = a_0 + b_M \log [N(M)_0 + r_{CM}(N(J)_0)]$$
 (3.9)

and solve for a_0 :

$$a_0 = \log(A(T)_0) - b_M \log[N(M)_0 + r_{CM}(N(J)_0)]$$
 (3.10)

Thus, for the <u>i</u>th airport in the <u>o</u>th AVport class, regardless of the number of civil jet or military operations, its total contour area is approximated by:

$$\log(A(T)_{i}) = a_{0} + b_{M} \log[N(M)_{i} + r_{CM}(N(J)_{i})]$$
(3.11)

or

.

1

i

ł

$$A(T)_{i} = 10^{a_{0}} [N(M)_{i} + r_{CM}(N(J)_{i})]^{b_{M}}$$
(3.12)

The combined contour area of all <u>k</u> airports in a given class for combined military and civil operations, \overline{A} , is given by:

$$\overline{A} = \sum_{i}^{K} A(T)_{i}$$
(3.13)

$$\frac{\sigma r}{A} = 10^{a} \circ \sum_{i}^{k} (N(M)_{i}) + r_{CM}(N(J)_{i}))^{b} M$$
 (3.14)

3-12

المتعاقب وفراقي ويؤرد والمنارين أراري المحو أنترك والمعتمد والمراجع والمعتمان والمعام والمعاد والمناف والمتعار

A MARKAN

Bolt Beranek and Newman Inc.

Values of A were calculated and summed over the five airport classes, yielding total contour areas for the following aircraft groupings:

- (a) Military operations alone (separately for the KC-135, F-4, and C-130 aircraft, and totals)
- (b) Civil operations alone (totals only)
- (c) All operations (separately for the XC-135, F-4, and C-130 aircraft, and totals).

Similar information was obtained for exposed population estimates. Item (a) was estimated for the Stage 1 65 dB contour only. The remaining items were estimated for the 55, 60, 65, 70 and 75 contours at all five regulatory stages.

Bolt Beranek and Newman Inc.

4.0 RESULTS

The state of the second

In this section the results of the noise contour analysis are presented. The reduction in noise contour area resulting from various stages of civil noise regulation are presented in Section 4.1. The reduction in the number of people exposed to these noise levels are shown in Section 4.2. The classes of airports which benefit most -- and least -- from civil noise regulations are noted in Section 4.3. Overall conclusions which can be drawn from the study are presented in Section 4.4.

4.1 Reduction in Impacted Area

Table 4-1 lists the total national area estimated to be impacted by noise of various levels around joint use airports. The areas which would be impacted if only civil aircraft were operating at these airports are shown under the "Civil Alone" column heading. The areas which would be impacted if only military aircraft were operating are shown in a row at the bottom of the table for the DNL 65 dB contour for each of the three aircraft types - KC-135, F-4, and C-130 - and for the totals. The areas impacted by all civil and military aircraft are shown under the "Civil and Military" column headings. The total values are shown as well as the portions dominated by the three military aircraft types.

To illustrate the results, let us take an example from the table. The total amount of area exposed to a DNL of 65 dB or more from all aircraft operations at the 7 airports where the KC-135 is the dominant military aircraft is 1BB square miles under Stage 1 regulations and 142 square miles under Stage 5 regulations. This is a reduction of 24 percent. The effect of Stage 5 regulations on the 35 airports dominated by F4-type aircraft is a reduction in the 65

4-1

server as and in the particular of

TABLE 4-1

;

i.

.

: (.

NATIONAL AREA WITHIN DNL CONTOURS

AT JOINT USE AIRPORTS BY

REGULATORY STAGE AND AIRCRAFT GROUP

Area Within Contour (Sq. M1.)

DHL of		<u>Civil and Military</u>					
Contour (dB)	Regulatory Stage	Civil Alone	Total*	KC135	F4	<u>c130</u>	
55	1	1674	3087	740	1906	441	
	2	1672	3066	740	1896	430	
	3	815	2441	614	1637	189	
	4	514	2301	569	1564	167	
	5	301	2166	551	1531	85	
60	1	851	1584	373	990	222	
	2	848	1578	373	990	215	
	3	417	1277	311	870	96	
	4	257	1208	291	834	82	
	5	137	1131	279	815	37	
65	1	432	813	188	514	111	
	2	419	807	187	513	107	
	3	213	669	158	462	49	
	4	129	634	149	445	40	
	5	62	594	142	437	16	
70	1	220	418	95	267	56	
	2	206	413	94	265	54	
	3	109	350	80	245	25	
	4	65	333	76	237	20	
	5	28	311	72	233	6	
75	1	122	215	48	139	28	
	2	101	211	47	137	27	
	3	56	183	41	129	13	
	4	33	174	39	126	10	
	5	13	163	37	124	3	
			<u>M1</u> .	litary Al	one		
65	1-5	-	580	140	430	10	

*Subtotals may not add to totals due to rounding.

4-2

مستعمله فالمعالمة المحافظ وتروي وأوقت والأولي ويحاف فالمعاد والمنافية والمتعاد والمستعمان والمسار

Bolt Beranek and Newman Inc.

dB contour area of 15 percent. The effect at the 19 C-130dominated airports is a reduction of 36 percent. The total average reduction is 27 percent. Thus, the dominant type of military aircraft at an airport has a clear influence on the effectiveness of civil aircraft noise regulations in reducing the area within noise contours when both civil and military operations are considered.

The reduction in area exposed to 65 dB DNL from civil aircraft operations is illustrated in Figure 4-1 for each of the five regulatory stages. From a baseline (Stage 1) area of 432 square miles, the reduction is 3 percent for Stage 2, 51 percent for Stage 3, 70 percent for Stage 4, and 36 percent for Stage 5. A similar chart in Figure 4-2 shows the area exposed to 65 dB DNL from all aircraft operations. The areas contributed by airports in each of the three military aircraft classes are also illustrated in the figure.

The relationship between noise exposure area and noise exposure level is illustrated in Figure 4-3 for civilian operations and in Figure 4-4 for military and civilian operations. The relationship between the noise level L and area A for both figures is seen to be roughly

 $L = a + b \log A, dB \qquad (4.1)$

as assumed in Section 3.3, where <u>a</u> is a constant and <u>b</u> is the slope of the line ranging from about -17 to -18.

4.2 Reduction in Exposed Population

The number of people estimated to be exposed to various levels of noise from joint use airport operations are shown in Table 4-2. The population which would be exposed if only civil aircraft were operating are shown under the "Civil Alone" column heading. The

4-3

4-4

. محمد ملموس جها مکتری از بودی او از کاری دید آن از این از این می این و به رمید دید و محمد می در محمد می این م

.

÷.

To a first strate and a second strategy of the

÷

1 К

فاصدعه وترور فكالأفا للتشم وترويله وتا

مىيى بىلىغان بارىيى ئۇچ ۋەرىلۇنىيەت ئىيەغىيەر بەرىيەرىيە بەرىيە بەرىيەر بەرىيەرىيە بەرىيەر

مسيد دونه المراجع المر المراجع المراجع

TABLE 4-2

NATIONAL POPULATION WITHIN DNL CONTOURS

AT JOINT USE AIRPORTS BY

REGULATORY STAGE AND AIRCRAFT GROUP

		Populat	ion With	in Conto	our (100	<u>)</u>
DNL of			<u>C1v11</u>	and Mil	litary	
Contour (dB)	Regulatory <u>Stage</u>	Civil <u>Alone</u>	<u>Total*</u>	<u>KC135</u>	<u>_F4</u>	<u>C130</u>
55	1 2 3 4 5	1983 1976 1152 723 407	3286 3284 2614 2383 2219	979 979 808 753 709	1798 1798 1517 1446 1400	509 507 289 185 110
60	1 2 3 4 5	1008 1001 595 352 188	1672 1669 1348 1219 1134	496 496 412 379 357	920 919 787 751 727	256 254 148 89 50
65	1 2 3 4 5	512 502 309 173 87	943 939 696 625 581	251 251 210 191 180	562 562 410 391 378	129 126 77 43 23
70	1 2 3 4 5	261 252 161 80 40	435 432 361 321 299	127 127 107 96 91	242 242 214 204 197	65 63 40 21 10
75 [·]	1 2 3 4 5	133 126 84 42 19	222 220 187 166 154	654 558 46	125 124 111 107 103	33 31 21 10 5
			<u>M111</u>	tary Alc	one	
65	1-5	-	540	165	370	1

÷

ł

*Subtotals may not add to totals due to rounding.

4-9

and the second memory and the second second

- いいたい第一次に行われたのである。

STREET AND A

Bolt Beranek and Newman Inc.

population exposed to the 65 dB contour from military operations alone are shown in the bottom row of the table. The population exposed to all civil and military aircraft are shown under the "Civil and Military" column heading. The total values are broken down by dominating military aircraft -- KC-135, F-4, or C-130 -in the last three columns.

The effect of regulations on population exposure for the three airport groups varies in a similar way as the area exposure estimates. The population exposed to 65 dB DNL or greater is reduced from Stage 1 to Stage 5 by 28 percent at KC-135-dominated airports, by 33 percent at F-4-dominated airports, and by 83 percent at C-130-dominated airports. The total average reduction is 38 percent.

Figure 4-5 illustrates the effects of the regulatory stages on the population exposed to 65 dB DNL or more from civil aircraft operations alone. From a baseline (Stage 1) population of 512,000, Stage 2 reduces the exposed population by 2 percent, Stage 3 by 40 percent, Stage 4 by 66 percent, and Stage 5 by 83 percent. Figure 4-6 illustrates the same effects for all operations. From a baseline population exposed to 65 dB DNL of 943,000, Stage 2 reduces the exposed population by 0.4 percent, Stage 3 by 26 percent, Stage 4 by 34 percent, and Stage 5 by 38 percent.

The relationship between noise exposed population and noise exposure level is illustrated in Figure 4-7 for civil operations and Figure 4-8 for all operations. The relationship between noise level L and population exposed P is seen to be approximately

$$L = a + b \log P, dB$$
(4.2)

4-9

ų,

11 ٠.

ومستعمدة معمد برجامعة وأرور ومعادة والمناكر والعصار ومنكسة فألد والاعتراض فالتوافق والاخترا

4-10

منع الله العلي وعليه الرويلية التي أورية ومن من المريكي ويتركي التي المادة المعادية والمعالمة المتعادين ومعا

ġ

5

ومعاديا والمسافية والمساري المساري والمسارية والمستقيل والمتعاد فالمتنا فالمتعالمة فالمتنا فتتعالم المالم

م معارضها محمل عالمین متواجع و دارا این در اینهٔ جند اور باده این درید انده و درمود میاند. محمد محمد و

いた。そのこのためになっていて、生活の特別にはなり、特別は基礎においてもないでのなどのなどの特別を利用する基準には特別を利用
المسرد المتلاقصة والأصيكية المستان المقترب الرميان وأزار لبلاتك عأفذة معاضعة

Bolt Beranek and Newman Inc.

where a is a constant and b is approximately -17. This equation applies to both total operations and to civil operations alone.

It is interesting to note at this point that these estimates of the noise exposed population around joint use airports are an appreciable fraction of that estimated in other studies for strictly air carrier airports, as shown below.

	Number of People Exposed	to DNL or Higher (millions)
	Joint Use Airports	Air Carrier Airports
DNL (dB)	(Stage 1)	(Ref. 10)
55	3.3	24.3
65	0.9	4.7
75	0.2	0.3

4.3 Effects on Different Airport Classes

Civil aircraft noise regulations affect different sized joint use airports in different ways. Table 4-3 shows the changes in 65 dB DNL contour areas which are estimated to occur between the baseline (Stage 1) and the most stringent (Stage 5) civil aircraft regulations presently contemplated. Similar results are observed for other DNL contour values and for population exposure estimates. The sample table shows the total area in square miles presently exposed to 65 dB or greater for airports in each of the five airport classes. Recall that the size of airports increases from A to D, with E being a special subset of class D airports. As expected, the exposure area increases somewhat proportionally to airport size.

4-14

فللم فشريتهم والمراجع والمراجع والمراجع والمراجع والمراجع المتحا بمحاد المتحا والمحاص والمحاص والمحافظ

TABLE 4-3

REDUCTION OF AREA WITHIN THE 65 dB DNL CONTOUR BY AIRPORT CLASS AND DOMINANT MILITARY AIRCRAFT

1 d		Total Area Within 65 dB DNL Contour	Pero Stag	cent Reduc ge 1 to St.	tion f: age 5	rom (%)
<u>Class</u>	Airports	(Sq.M1.)	<u>Total*</u>	<u>KC-135</u>	<u>F-4</u>	<u>C-130</u>
A	9	61	50		12	91
В	16	197	8	2	3	84
С	14	179	17	14	11	84
D	20	350	39	31	31	83
E	2	25	18		18	83
Total*	61	813	27	25	15	86

*Subtotals may not add to totals due to rounding. A dash(--) indicates these aircraft are not based at airports in the given class.

A DEPARTMENT OF A DEPARTMENT

Bolt Beranek and Newman Inc.

With one exception, the reduction in area which can be achieved with civil aircraft noise regulations also increases with airport size, whether the reduction is measured in terms of percent or absolute value. The exception is Airport Class A, where the C130 is the predominant military aircraft and there are no air carrier jet operations. For airports in this class the noise from business jets are greatly reduced between Stage 1 and Stage 5. In the absence of other noisy aircraft, this reduction has a great effect on the overall Class A airport contours.

As the table shows, effects on KC-135 and F-4 dominated airports are relatively similar in terms of percent reduction of contour area. The effects on C-130 dominated airports are much larger, irregardless of airport class.

The conclusions from this brief analysis are that civil aircraft noise regulations have their greatest effect on large size joint use airports, and that small airports without air carriers or military jets but with a significant number of business jets will also be benefited by very strict civil noise regulations.

4.4 Conclusions

Man and the Contraction of the contract of the contract of the second of the second of the second of the second

, I

Table 4-4 summarizes the some of the noise exposure results which are discussed in the previous sections. Noise exposure areas and population figures are shown for three DNL contour values --55, 65, and 75 dB -- and for three regulatory stages -- Stage 1, Stage 3, and Stage 5. From this table and from the results discussed above, the following conclusions may be drawn:

4-16

فمنعم محافظهم والأراني وتوقيق مركز والمرتبة المنازلون بالمتحصرة المجامع المحمدة مستحديته والمحم محمسه المراجع

TABLE 4-4

SUMMARY OF JOINT USE AIRPORT NOISE EXPOSURE ESTIMATE

		<u>Civil</u>	Military	<u>Civil</u>	and Milit	ary
		<u>Stage 1</u>	<u>Stage 1</u>	<u>Stage 1</u>	<u>Stage 3</u>	<u>Stage 5</u>
DNL Contour	<u>(dB)</u>	Area	Within Contour	(Sq.M1.)		
55		1700	2000	3100	2400	2200
65		430	580	810	670	590
75		120	160	220	180	160

	Populat	Population Within Contour (Millions)				
55	2.0	2.0	3.3	2.6	2.2	
65	0.5	0.5	0.9	0.7	0.6	
75	0.1	0.1	0.2	0.2	0.2	

والمستعدين والمحمد والمنارية والمركب والمنارية والمراجع والمراجع والمتحد والمتحد والمحالية والمحارية والمحاري والمحافظة والمحافظة

·. .

- 1. The degree of noise exposure around joint-use airports is an appreciable fraction of the noise exposure found around strictly air carrier airports in the United States.
- The relative contribution from military and civilian aircraft to the noise exposed areas and populations around joint-use airports is roughly equal in magnitude.
- 3. The benefits from civil aircraft noise regulations for joint-use airports, as measured, for example, by the successive reduction in area and population exposed to 65 dB DNL relative to the previous stage, are found to be as follows:
 - a minor reduction between Stages 1 and 2 (0.8% in area,
 0.4% in population)
 - b) a major reduction between Stages 2 and 3 (17% in area, 26% in population)
 - c) a moderate reduction between Stages 3 and 4 (5% in area, 10% in population)
 - d) a moderate reduction between Stages 4 and 5 (6% in area, 7% in population)
- 4. The relationship between noise exposure level and both exposure area and exposed population is approximately given by

 $L = a - 17 \cdot \log x, dB \qquad (4.3)$

مستعملين عديوكي والمرتبين وتتتر بسبكي فأراره والأسالية والمنابعة وتنبر أرالية والمنابع المعاملين علالا ملاطلة والمسالية والمسترجان

where L is the average day-night sound level x is either the area or population exposed to L or higher

and a is an appropriate constant.

4-18

5.3

Statistics.

Bolt Beranek and Newman Inc.

- 5. Civil aircraft noise regulations have their greatest benefit at the largest joint-use airports (100 or more daily operations--Class D). As these regulations become increasingly strict, major benefits are also observed at small airports with no air carriers (Class A) in cases where business jet operations are significant and the C-130 is the dominant military aircraft.
- 6. Since they represent 35 of the 61 airports under study, joint-use airports where fighters predominate (F-4 airports) contribute the greatest amount to the national area and population exposure figures (60 to 75 percent). Their contribution is highest at strict stages of civil noise regulation, therefore this military aircraft type deserves the greatest attention as civil aircraft become increasingly quieter. The seven airports where the KC-135 is the dominant military aircraft contribute a rather constant moderate amount to the total figures (25 to 30 percent). The 19 airports where the C-130 and C-7 dominate only contribute a small amount (2 to 15 percent) to the total exposure. This contribution tends to decrease at more strict stages of civil noise regulation.

4-19

ċ.

ļ

Service and a service and

Bolt Beranek and Newman Inc.

REFERENCES

- C. Bartel and L. C. Sutherland, "Noise Exposure of Civil Aircarrier Airplanes Through the Year 2000", Wyle Research Report WR 78-11 for the U.S. Environmental Protection Agency (EPA), February 1979.
- "Air Force Reserve Flying Wings and Assigned Units", and "The Air National Guard by Major Command Assignment (as of April 1, 1979)", p. 109 and 113, <u>Air Force Magazine</u>, May 1979.
- "Tower Airport Statistics Handbook, Calendar Year 1978", U.S. Departments of Transportation (DOT), Report No. FAA-AVP-79-2, April 1979.
- Population Near Airports Study for Civil Aeronautics Boards", Federal Aviation Administration (FAA), March 21, 1979.
- "Official Airline Guide, North American Edition", The Reuben H. Donnelley Corporation, Oak Brook, Illinois, Vol. 4, No. 19, July 1978.
- "Official Airline Guide, Worldwide Edition", Official Airline Guides Inc., Oak Brook, Illinois, Vol.4, No. 10, December 1979.
- 7. D. E. Bishop, J. F. Mills, and J. M. Beckmann, "Sound Exposure Level Versus Distance Curves for Civil Aircraft", Bolt Beranek and Newman (BBN) Report 2759R, U.S. EPA, February 1976.

R-1

والمحافظ والمراجع والمحافظ والمحافظ والمحافظ والمحاوي والمحافظ والمحافظ والمحاول والمحاوظ والمحافظ والمحافظ والمحافظ

د. از مسیمه این معینیسیده به مدین از معیش در برد و میلویه گرزشگاه دورت با مداخله معامله معاد

REFERENCES (CONTINUED)

- B. D. E. Bishop and A. P. Hays, "Handbook for Developing Noise Exposure Contours for General Aviation Airports", U.S. DOT Report No. FAA-AS75-1, December 1975.
- National Business Aircraft Association, "Survey of Business Aviation for the Calendar Year 1979", by Price Waterhouse and Co., July 16, 1975.
- 10. D. E. Bishop, "Community Noise Exposure Resulting from Aircraft Operations: Application Guide for Predictive Procedure", Air Force Report AMRL TR-73-105, Nov. 1974 [AD A004818].
- 11. R. D. Horonjeff, R. R. Kandukuri and N. H. Reddingius, "Community Noise Exposure Resulting from Aircraft Operations: Computer Program Description", Air Force Report AMRL-TR-73-109, Nov. 1974 [AD A004821].
- 12. J. M. Beckmann, H. Seidman, "Community Noise Exposure Resulting from Aircraft Operations: NOISEMAP 3.4 Computer Program Operator's Manual", Air Force Report AMRL-TR-78-109, December 1978.
- "Community Noise Exposure Resulting From Aircraft Operations, Vol. 1-6," Aerospace Medical Research Laboratory Report AMRL-TR-73-110, February 1978.
- 14. W. J. Galloway, J. F. Mills, A. P. Hays, "Data Base for Predicting Noise from Civil Aircraft: Flight Profile Prediction", BBN Report 2746R, March 1976.

R-2

ことが、 して かくさいかんだい いってい 御御御御 かいの 医神秘病科学 かいち おおお 教育教育教育 あるまが教育

All and a sum

Bolt Beranek and Newman Inc.

REFERENCES (CONTINUED)

15. D. E. Bishop, J. F. Mills, J. M. Beckmann, "Effective Perceived Noise Level Versus Distance Curves for Civil Aircraft", BBN Report 2747R, Feb. 1976.

A Detroit

Bolt Beranek and Newman Inc.

•----

APPENDIX A

		AP	PEHI		(A		
FLIC	HT	PROCE.	DURE	5	USED	TO	MODEL
CIVIL	AIF	RCRAFT	ΑT	J(DINT-U	JSE	AIRPORTS

Air Ai <u>Ca</u>	r Carrier Freraft Stegory	Representative Aircraft Type	Takeoff Flight Procedures Used (Figure No.)	Landing Flight Procedures Used (Glide Slope)(2)
1.	4 Eng. Wide	747	A-1,2 ⁽¹⁾	3°
2.	4 Eng. Narrow	707	A-3,4 ⁽¹⁾	3°
3.	3 Eng. Wide	DC-10	A-5,6 ^(l)	3°
4.	3 Eng. Narrow	727	A-7,8	3°
5.	2 Eng. Wide	A300	A-9	3°
б.	2 Eng. Narrow	DC-9	A-10,11	3°
7.	2 Eng. TP-Dart	HS748	A-12	3°
8.	2 Eng. TP- Allison	CV580	A-12	3°
9.	2 Eng. Hvy. TO PT6	- SD3-30	A-13	3°
10.	2 Eng. Lt. TP- PT6	DHC-6	A-14	4.5°
11.	2 Eng. Piston	Composite	A-15	4.5°
12.	l Eng. Piston	Composite	A-16	4.5°
13.	Misc.	Electra	A-17	3°
Gen	eral Aviation Aircraft Category			
1.	Bus. Jet	Composite	A-18	3°
2.	2 Eng. Piston	Composite	A-15	4.5°
3.	l Eng. Piston	Composite	A-16	4.5°

(1) Two profiles are defined for each of these aircraft: one representing short range operations and one representing long range operations. Average stage lengths were computed for all flights under four hours for shortrange trips, and over four hours for long range trips. The aircraft weights which corresponded to the computed stage lengths were then used to choose the appropriate takeoff profiles.

(2) Full flaps are assumed for all aircraft landings.

。 1997年19月,19月1日,

ALL REAL PROPERTY AND

A-1

.

>

DISTANCE FROM STAFT OF ROLL FIGURE A-3. TAKEOFF CHARACTERISTICS FOR 4-ENGINE LBPR TURNOFAN

1.00

· . ·

.

. .

· · •

10.000

DISTANCE FROM START OF ROLL FIGURE A-7. TAKEOFF CHARACTERISTICS FOR 3-ENGING LBPR TURBOFAN

والمستحين والمستعنين فأسلحه أسله فالمشارف ومناعات والمسترك فالمستحا والمستحد فالمستحد فالمستحد والمستحد والمستح

FIGURE A-9

TAKEOFF PROFILE FOR A300

Distance From Brake Release (feet)	Height (feet)	Speed (kt)	RPM
			 _
0	· 0	0	2260
5,500	0	164	3300
13,167	1,000	164	3360
18,377	1 300	104	3360
19,377	2,000 1 D/m	190	3280
23.217	1,345	210	3280
37 305	1,520	210	3280
5/330 5/ 570	3,000	250	3280
24,272	3,850	250	3280
145,000	10,752	250	3200
			3400

1

t

۰.

1

ł

all shirts

.

10.1

and the second

FIGURE A-10. TAKEOFF CHARACTERISTICS FOR 2-ENGINE LBPR TURBOFAN

ومتحافظة فعتله أحدجا يتأثر فالتقلك وتسافر وأرادتهما وقن

.....

and the second second

.

FIGURES A-12 to A-18

Profiles for the aircraft listed in the following figures are based on simplifying assumptions of typical constant speed, climb gradient and power settings. Actual flight procedures vary widely depending on operator preference, weather conditions, load, and other individual aircraft and airport characteristics. Since these types of aircraft are not dominant sources of noise at jointuse airports, this simplification should not adversely affect the accuracy of the noise exposure analysis.

٦

1

Distance From Brake Release (ft.)	<u>Height (ft.)</u>
FigA-12 Takeoff Profile for HS748 and CVR	580
0 2,662 10,000 100,000	0 644 8,547
FigA-13 Takeoff Profile for SD3-30	
0 3,000 20,000 100,000	0 0 2,000 10,700
FigA-14 Takeoff Profile for DHC-6	
0 1,948 10,000 100,000	0 922 11,231
FigA-15 Takeoff Profile for 2 Eng. Piston	
0 2,000 3,000 100,000	0 0 100 11,170
FigA-16 Takeoff Profile for 1 Eng. Piston	
0 720 1,650 10,000 100,000	0 50 846 9,915

A-13

مستحصوه سابا بالأفارية بوالربابة بالاخترابينية والزعور فوثورك المسطو كالمحافظة

Mailton P

FIGURES A-12 to A-18 (Continued)

i.

111

and a summarian and an a summarian large and a substantian the stranger of the second second second second second

Distance From Brake Release (ft.)	<u>Height (ft,)</u>
FigA-17 Takeoff Profile for Electra	
5,000 100,000	0 0 7,200
FigA_18 Takeoff Profile for Bus. Jet	
0 3,500 39,792 100,000	0 0 6,261 17,668

.

!

(

ŝ

۰.

÷

A-14

والمساوية والمساوية الاحتدامة والمترقفة والمتركبين

مرمقية بتلاجيدن أبريت فالتاجل والمعادمة